Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616398

RESUMO

Poly(dimethyl siloxane)-MQ rubber molecular composites are easy to prepare, as it does not require a heterophase mixing of ingredients. They are characterized by perfect homogeneity, so they are very promising as rubber materials with controllable functional characteristics. The manuscript reveals that MQ resin particles can significantly, more than by two orders of magnitude, enhance the mechanical properties of poly(dimethyl siloxane), and, as fillers, they are not inferior to aerosils. In the produced materials, MQ particles play a role of the molecular entanglements, so rubber molecular weight and MQ filler concentration are the parameters determining the structure and properties of such composites. Moreover, a need for a saturation of the reactive groups and minimization of the surface energy of MQ particles also determine the size and distribution of the filler at different filler rates. An unusual correlation of the concentration of MQ component and the interparticle spacing was revealed. Based on the extraordinary mechanical properties and structure features, a model of the structure poly(dimethyl siloxane)-rubber molecular composites and of its evolution in the process of stretching, was proposed.

2.
Polymers (Basel) ; 13(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671474

RESUMO

A series of carbosilane dendrimers of the 4th, 6th, and 7th generations with a terminal trimethylsilylsiloxane layer was synthesized. Theoretical models of these dendrimers were developed, and equilibrium dendrimer conformations obtained via molecular dynamics simulations were in a good agreement with experimental small-angle X-ray scattering (SAXS) data demonstrating molecule monodispersity and an almost spherical shape. It was confirmed that the glass transition temperature is independent of the dendrimer generation, but is greatly affected by the chemical nature of the dendrimer terminal groups. A sharp increase in the zero-shear viscosity of dendrimer melts was found between the 5th and the 7th dendrimer generations, which was qualitatively identical to that previously reported for polycarbosilane dendrimers with butyl terminal groups. The viscoelastic properties of high-generation dendrimers seem to follow some general trends with an increase in the generation number, which are determined by the regular branching structure of dendrimers.

3.
Soft Matter ; 14(48): 9755-9759, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30484468

RESUMO

Variation of generation number strongly affects the type of ordering found for polybutylcarbosilane dendrimers: G5 dendrimers are liquid-like, G6 are cubic liquid crystals and G7/G8 are disordered close-packed. It was revealed that G6 dendrimers are highly likely to form Im3[combining macron]m lattice structures with the parameter a = 5.15 nm, and a domain size that exceeds 100 nm.

4.
Sci Rep ; 7(1): 13710, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29057955

RESUMO

Melts of polybutylcarbosilane (PBC) dendrimers from third (G3) up to sixth (G6) generations are investigated by 1H NMR spectroscopy in a wide temperature range up to 493 K. At room temperature, NMR spectra of G3-G5 dendrimers exhibit resolved, solution-like spectra ("liquid" phase). In contrast, the spectrum of the G6 dendrimer is characterized by a single unresolved broad line at whole temperature range, which supports the presence of an anomalous phase state of G6 at temperatures higher than glass transition temperature. For the first time, an unexpected transition of G5 dendrimer from a molecular liquid state to an anomalous state/phase upon temperature increase has been detected using NMR data. Specifically, an additional wide background line appears in the G5 spectrum above 473 K, and this line corresponds to a G5 state characterized by restricted molecular mobility, i.e., a state similar to the "anomalous" phase of G6 melt. The fraction of the G5 dendrimers in "anomalous" phase at 493 K is approximately 40%. Analysis of the spectral shapes suggests that changes in the G5 dendrimers are reversible with temperature.

5.
J Phys Chem B ; 119(45): 14527-35, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26494191

RESUMO

The temperature dependences of heat capacities of carbosilane dendrimers of the sixth generation with ethyleneoxide terminal groups, denoted as G6[(OCH2CH2)1OCH3]256 and G6[(OCH2CH2)3OCH3]256, were measured in the temperature range from T = (6 to 520) K by precision adiabatic calorimetry and differential scanning calorimetry (DSC). In the above temperature range the physical transformations, such as glass transition and high-temperature relaxation transition, were detected. The standard thermodynamic characteristics of the revealed transformations were determined and analyzed. The standard thermodynamic functions, namely, heat capacity Cp°(T), enthalpy H°(T) - H°(0), entropy S°(T) - S°(0), and Gibbs energy G°(T) - H°(0) for the range from T → 0 to 520 K, and the standard entropies of formation ΔfS° of the investigated dendrimers in the devitrified state at T = 298.15 K, were calculated per corresponding moles of the notional structural units. The standard thermodynamic properties of dendrimers under study were discussed and compared with literature data for carbosilane dendrimers with different functional terminal groups.

6.
Appl Magn Reson ; 44: 1015-1025, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23914072

RESUMO

The structure of MQ copolymers of the general chemical formula [(CH3)3SiO0.5]m [SiO2]n was characterized by means of solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The MQ copolymers are highly branched polycyclic compounds (densely cross-linked nanosized networks). MQ copolymers were prepared by hydrolytic polycondensation in active medium. 29Si NMR spectra were obtained by single pulse excitation (or direct polarization, DP) and cross-polarization (CP) 29Si{1H} techniques in concert with MAS. It was shown that material consist of monofunctional M (≡SiO Si (CH3)3) and two types of tetrafunctional Q units: Q4 ((≡SiO)4Si) and Q3 ((≡SiO)3SiOH). Spin-lattice relaxation times T1 measurements of 29Si nuclei and analysis of 29Si{1H} variable contact time signal intensities allowed us to obtain quantitative data on the relative content of different sites in copolymers. These investigations indicate that MQ copolymers represent dense structure with core and shell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...